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Given a path in a spatial or temporal framework, we aim to find all contiguous subpaths that are both inter-
esting (e.g., abrupt changes) and statistically significant (i.e., persistent trends rather than local fluctuations).
Discovering interesting subpaths can provide meaningful information for a variety of domains including
Earth science, environmental science, urban planning, and the like. Existing methods are limited to detecting
individual points of interest along an input path but cannot find interesting subpaths. Our preliminary work
provided a Subpath Enumeration and Pruning (SEP) algorithm to detect interesting subpaths of arbitrary
length. However, SEP is not effective in avoiding detections that are random variations rather than mean-
ingful trends, which hampers clear and proper interpretations of the results. In this article, we extend our
previous work by proposing a significance testing framework to eliminate these random variations. To com-
pute the statistical significance, we first show a baseline Monte-Carlo method based on our previous work
and then propose a Dynamic Search-and-Prune (D-SAP) algorithm to improve its computational efficiency.
Our experiments show that the significance testing can greatly suppress the noisy detections in the output
and D-SAP can greatly reduce the execution time.
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1 INTRODUCTION

A spatiotemporal field data model [33] consists of two parts, a spatiotemporal framework, that
is, a partition of space or time (e.g., latitude and longitude grid), and a function defined on the
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Fig. 1. An example of interesting subpath in the data and found by related work (best viewed in color).

Fig. 2. A classification of related work.

framework (e.g., the degree of vegetation cover). Given a spatiotemporal (ST) dataset and a path
embedded in its spatiotemporal framework, the goal is to identify all contiguous subsets of the
given path that are both interesting (i.e., measured by an interest measure) and statistically signif-
icant (i.e., not likely to occur by random chance under a null hypothesis). For example, Figure 1(a)
shows the degree of vegetation cover along a particular spatial path (e.g., a longitude across a con-
tinent). Given an interest measure of abrupt change, one may identify an interesting subpath from
location 5 to 11. Vegetation cover in this subpath exhibits an abruptly increasing trend as shown
in Figure 1(b).
The ability to discover interesting subpaths is important for many application domains. In Earth

science, vegetation cover is often used to study how different ecological zones respond to cli-
mate change. Given a path (e.g., along a longitude in Africa) and an interest measure of abrupt
change, one can find subpaths (e.g., paths across the Sahel desert) with sharp increases (decreases)
of vegetation cover. Such subpaths may outline the spatial footprint of transitional areas, known
as ecotones [28], between ecological zones. Due to their vulnerability to climate change, finding
and tracking ecotones give us important information about how the ecosystem responds to the
changes [26]. Interesting subpath discovery also contributes to other applications. Water quality
monitors may be interested in river subpaths where water quality changes abruptly. State traffic
engineers may be interested in highway subpaths where the traffic speed suffers from large de-
creases (e.g., forming congestions). Economists may be interested in finding significant changes in
stock market prices or other economic indices. Coastal area authorities may be interested in coast-
line subpaths, which are prone to rapid environmental change due to rising sea level and melting
polar icecaps.
Previous work on interesting spatiotemporal subpath discovery has focused on change point

detection using global or local approaches, as shown in Figure 2. Global approaches aim to find
points in a temporal path where there is a shift in the entire data distribution [6, 27, 29, 32, 34].
For example, Figure 1(c) shows the output of the CUSUM [22, 29] approach on the sample data
in the previous example. It finds location 6 as a point of interest (with an abrupt change from
below the mean to above the mean). Local approaches (e.g., [8, 14]) compare pixel values within a
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small local neighborhood and evaluate the differences among the values (e.g., gradients). Given a
linear input path, local techniques will output the locations where large differences are observed
at their local neighborhoods, and the spatial relationships among different local neighborhoods
are ignored. These methods are limited to detecting individual points of interest in an ST path;
they cannot find interesting subpaths of arbitrary length.
In our previous conference paper [46], we proposed a subpath enumeration and pruning (SEP)

approach to discover intervals with rapid changes (i.e., trends or footprints of change). The two
design decisions in SEP, namely, a row-wise strategy and a top-down strategy, make it outperform
a baseline solution in computation time and can discover meaningful patterns from Earth science
datasets. However, SEP detects change intervals only based on their change rates and lack the
ability to distinguish between persistent meaningful trends (i.e., significant intervals of change)
and local fluctuations (noise intervals) that can be generated by random chance [40]. This ability,
however, is very important when dealing with observations andmeasurements from domains such
as environmental science and Earth science.
To address this limitation, this article extends our previous work by investigating computational

solutions that can discover statistically significant interesting subpaths from spatial or temporal
datasets. In other words, the output excludes patterns that are likely formed by random chance
(e.g., local fluctuations). However, the challenge is that, for this problem there is no known sta-
tistical distributions that can be used to compute the p-value in closed form. As a result, a Monte
Carlo framework is needed to estimate the p-value through a large number of simulation trials,
leading to huge amount of extra computational cost. For example, m trials of Monte Carlo sim-
ulation will increase the total computational cost by orders ofm, whose value is typically 1,000,
10,000, or more.
We tackle this computational challenge by proposing a new algorithm, namely Dynamic Search

and Prune (D-SAP), to efficiently estimate the statistical significance of identified interesting sub-
paths. The D-SAP algorithm uses a novel modeling to bring out the relationships among sub-
paths of different lengths and uses these relationships to dynamically narrow down the search
space.
Through a case study using Earth science data, we show that the new approach can effectively

filter out nonsignificant results in the output, which otherwise could prevent us from seeing the
actually meaningful patterns. In addition, with controlled experiments, we show that the D-SAP
algorithm greatly outperforms the baseline algorithm by orders of magnitude in execution time.
Contributions: Specifically, this article makes the following new contributions: (1) we intro-

duce statistical significance testing into the discovery of interesting intervals and propose a base-
line Monte Carlo method to estimate the p-values of interesting intervals; (2) we propose a new
D-SAP algorithm to greatly reduce computational cost and speed up the p-value estimation; (3) we
validate the improvements on solution quality (i.e., reducing noise patterns) through a case study
using a real-world Earth science dataset; and (4) we validate the new algorithm’s computational
efficiency through controlled experiments.
Scope: This article deals with interesting subpaths given a linear path such as a coastal river

line, a highway, a trajectory, and so forth. It does not deal with subregions or subvolumes. Domain-
specific methodologies that guide users in choosing an interestingness threshold (e.g., threshold
for abrupt change in Earth science studies) are also beyond the scope of this article.
Outline: The rest of the article is organized as follows: Section 2 introduces basic concepts and

formalizes the interesting subpath discovery problemwith statistical significance testing. Section 3
discusses the baseline algorithm for significance testing, as well as our accelerated D-SAP algo-
rithm. Section 4 shows an instance of an interesting subpath and presents a case study on a real
eco-climate dataset. Section 5 presents the experimental results on computational time. Section 6
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Fig. 3. An example spatiotemporal path with 11 unit subpaths.

discusses alternative design decisions for the proposed method. Section 7 discusses the differences
between this work and some other related problems involving ST paths, such as trajectories and
time series. Section 8 concludes the article and envisions potential future work.

2 PROBLEM FORMULATION

This section introduces some basic concepts used in the formulation of the significant interesting
subpath discovery problem. We then give the formal problem statement, as well as an illustrative
toy example.

2.1 Basic Concepts

A spatiotemporal path is a collection of contiguous locations or time points in a spatiotemporal
field. Examples of spatiotemporal paths include a longitude, a trajectory, and a time series.

Definition 1 (Subpath). Given a spatiotemporal path S consisting of N locations s1, s2, . . . , sN , a
subpath (si , sj ) of S is a contiguous subset of locations from si to sj in S .

A unit subpath is the smallest subpath containing two contiguous locations (e.g., (si , si+1)).
Figure 3 shows an example of a path and its unit subpaths (e.g., (1, 2), (5, 6), etc.). The type of
attribute values used for the spatial or temporal locations depends on the domain application.
For example, the attribute may be vegetation or water quality index for ecologists, stock price for
economists, or traffic volume for transportation scientists.

Definition 2 (Interest Measure of a Subpath). An interest measure of a subpath (si , sj ) is an ag-
gregate function that takes the attribute values of its contained locations and outputs a single
value representing the interestingness of the subpath. Formally, the function can be written as
F : Rm → R, wherem is the total number of locations inside (si , sj ).

Aggregate functions can be categorized as distributive, algebraic, or holistic [34]. Distributive
functions are those that can be computed by a linear scanwith only one temporary variable, such as
sum, count , and the like. Algebraic functions can be computed by a constant number of distributive
functions, such as averaдe , which can be computed by sum/count . Holistic functions are those that
cannot be computed using a constant number of distributive functions, such asmedian. This article
mainly focuses on interest measures that are algebraic functions (e.g., average) as is the case for
most statistical tests. This type of interest measure can be computed using a constant number k of
distributive functions {D1

aддr ,D
2
aддr , . . . ,D

k
aддr }.

Definition 3 (Closed-set Interest Measure). Given an interest measure F and a threshold t , all
the subpaths in a given path S can be classified into one of two sets: an interesting set Uint =

{W |F (W ) ≥ t } and a noninteresting set Unoi = {W |F (W ) < t }, whereW is a subpath, and Uint ∩
Unoi = ∅. The interest measure function is closed set if, for any pair of adjacent subpaths S1 =
(si , sj ), S2 = (sj+1, sk ) from the same set, S3 = concat (S1, S2) = (si , sk ) remains in the same set as S1
and S2 do, where concat () denotes concatenation.

Definition 3 suggests that concatenating two contiguous subpaths from the “interesting”
set should generate another interesting subpath. Similarly, concatenating two “noninteresting”
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subpaths should not generate an interesting subpath. Note that if the two subpaths are from two
different sets, then the result could be in either the “interesting” or “noninteresting” set.
While the majority of popular measures (e.g., mean, min, max) do have this desired “closed set”

property to maintain a clearly defined mathematical boundary between “interesting” and “nonin-
teresting” subpaths, some other measures such as standard deviation do not.
In Figure 1 and Figure 3, the interest measure can be defined as the average change between

adjacent locations, which is equivalent to the slope or change rate of the subpath. For example, the
interestingness of the subpath (5, 11) is 3.5. Some other examples of closed-set interest measures
include weighted average, sameness degree [46], average change rate [47], median, general qth

quantile, extremes (e.g., min/max), and so on. In this article, we assume that the interest measure
function is a closed-set measure.

Definition 4 (Interesting Subpath (ISP)). Given a spatiotemporal path S , an algebraic function F
as an interest measure, and a threshold t for the interest measure, a subpath (si , sj ) is an interesting
subpath (ISP) of S if F (si , sj ) ≥ t .

For example, in Figure 3, a user may consider a subpath to be interesting if the change rate is at
least 3.5. Given this threshold, we can find subpath (5, 11) as one of the ISPs.

Definition 5 (Dominant Interesting Subpath (Dominant ISP)). Dominant ISP is an ISP that is not
a subpath of any other ISPs. In other words, it is a maximal ISP.

For example, in Figure 3, subpath (5,7) is an ISP with an interest measure value of 5.0 (threshold
is 3.5 as defined earlier). However, it is not a dominant ISP because it is a subpath of ISP (5,11)
whose interest measure value is 3.5.

2.2 Statistical Significance

One major drawback of our previous work [46] is that, in real-world applications, the majority
of detected dominant ISPs are very tiny and are likely to be caused by random noises in the path
(e.g., local fluctuations). In addition, it is not very clear how to scientifically and correctly set a
threshold on the length of dominant ISPs to remove results that are not meaningful or occur likely
due to chance. For example, a real-world spatial or temporal path normally contains a large num-
ber of local variations such as increases or decreases between two adjacent pixels (or locations).
While these increases (or decreases) themselves may appear like random events that are not very
meaningful, they can form longer ISPs when being located together. The lack of understanding is
in whether these increases (or decreases) are located together due to random chance or because
they belong to a meaningful trend (e.g., deforestation or drought related to climate change).
We propose a statistical significance test to address this issue. Our goal is to find a threshold

of the length below which a dominant ISP is likely to be formed by random chances rather than
being part of a persistent and meaningful trend. Specifically, we will use a p-value test, so such
chance can be modeled using a p-value threshold. Denote C as a collection of attribute values
of all locations in a path. Our null hypothesis for the p-value test states that a dominant ISP of
length L exists in a path where the values in C are randomly distributed across its locations (i.e.,
no meaningful trend and purely random).
Since the exact distribution of ISP lengths is unknown and currently there is no existing sta-

tistical distribution that can be used to represent it, we use Monte Carlo simulation to estimate
the length threshold. The Monte Carlo simulation has M trials (typical values of M include 1,000,
10,000, etc.). In each trial, it generates a simulated path under the null hypothesis.1 Then, it finds

1Note that the null hypothesis can also be defined based on specific application domains. In addition, it only affects the

generation process of simulated paths and will not affect the proposed algorithms.
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the longest ISP in the simulated path and stores its length into a descendingly ordered table. After
all theM trials are completed, the table will containM longest lengths. Finally, to test if the length
of a detected ISP is likely to appear by chance, we insert it into the table and check its rank r in
the table. If our p-value threshold is α (e.g., 0.01, 0.05), then we conclude that the detected ISP is
statistically significant if r < α ·M . Otherwise, the ISP is considered as a chance pattern.

2.3 Problem Statement

The significant interesting subpath discovery problem is formally defined as follows:

Given:

• A path S in a spatiotemporal framework with n locations: s1, s2, . . . , sn
• Attribute values associated with locations
• An algebraic, closed-set interest measure function F : Rm → R
• An interest measure threshold t
• A p-value threshold α

Find: All dominant interesting subpaths (DISPs) in S with a p-value smaller than α
Objective: Computational efficiency
Constraint:

• Correctness of the results, i.e., all the ISPs found should be dominant, having an interest
measure value≥ t and p-value< α

• Completeness of the results, i.e., all ISPs satisfying the correctness criteria should be found

For the given input data shown in Figure 1, the interest measure is the change rate (i.e., average
changes between adjacent locations), and its threshold is 3.5. The corresponding output DISPs will
be subpaths 1-2 and 5-11, with interest measure values of 7.0 and 3.5, respectively.

3 COMPUTATIONAL APPROACHES

An SEP approach was proposed in our previous paper [46] to find DISPs for an input path. In that
work, we only needed to search for DISPs on a single input path because there is no significance
testing (i.e., no simulated paths). As discussed in Section 2.2, testing detected DISPs for statistical
significance requires Monte Carlo simulation, which means running the detection algorithm in a
large number of simulation trials. The number of simulation trialsM is typically a very large (e.g.,
M =10,000) to improve the accuracy of estimation. Thus, reducing the time cost of Monte Carlo
simulation is critical to improve computational efficiency.
In this section, we first review the key ideas of the SEP approach in our previous work [46],

and then focus on our new algorithm design for the significance test phase (i.e., Monte Carlo
simulation).
We will show that the SEP algorithm is no longer an efficient choice for the baseline algorithm

in Monte Carlo simulation. To address this, we propose a new baseline algorithm SEP-MCS, and
then show our accelerated algorithm, called D-SAP.

3.1 Review of Previous Work: Subpath Enumeration and Pruning (SEP)

3.1.1 Data Representation: A Grid-based Directed Acyclic Graph (G-DAG). The set of all the
subpaths in a path can be represented as a grid structure based on each subpath’s start and end
location. Figure 4(a) shows this grid representation for the example path in Figure 1where each row
contains subpaths with a common start location. The cells along the diagonal are the unit subpaths.
As can be seen, each cell (subpath) is dominated by all the cells to the left-bottom quadrant. Adding
the dominating relationship among the neighboring cells, we get a directed acyclic graph, where
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Fig. 4. An illustration of the enumeration space and corresponding grid-based DAG representation.

each node is a subpath in S and each directed edge is a dominating relationship between a pair
of subpaths. We call this a grid-based directed acyclic graph (G-DAG). Figure 4(b) shows a G-
DAG for the example path in Figure 1, whose subpaths and dominance relationships are given in
Figure 4(a). We define several properties of a G-DAG as follows.

Definition 6. Each node in a G-DAG has a row and a column number. The column number
equals the start location of the subpath it represents in the underlying dataset, while the row
number equals the end location of the subpath it represents in the data. For example, subpath
5-11 is on row 11, column 5. For a spatial path with n locations, there are n · (n − 1)/2 subpaths.
Correspondingly, in the G-DAG representation of this spatial path, there are n · (n − 1)/2 nodes.
Definition 7. Each inner node in a G-DAG has two parent nodes (direct predecessors), which are

subpaths longer by 1 unit. Nodes along the two borders of the G-DAG have only one parent. The
root node has no parent. For example, the two parents of node (5, 11) are nodes (5, 12) and (4, 11).

This G-DAG representationwill be helpful to conceptually illustrate both the SEP algorithm [46]
and the newly proposed algorithms, SEP-MCS (baseline) and D-SAP (accelerated), for significance
testing.

3.1.2 SEP Traversal Strategy. The SEP algorithm traverses the G-DAG representation of the
input path to find dominant interesting subpaths (DISP).
It employs a top-down Breadth-First-Search (BFS) traversal over the G-DAG, starting from the

root node (longest subpath). Figure 4(c) shows the traversal order and pruning used by the SEP
algorithm. Yellow nodes correspond to ISPs in the spatial path, and the blue nodes (1,2) and (5,11)
are the only DISP nodes discovered in the data. Blue arrows represent the SEP traversal.
Since SEP uses a top-down traversal strategy, longer subpaths will always be evaluated before

shorter subpaths (i.e., parent nodes are evaluated before child nodes). For each node being evalu-
ated, the algorithm computes the interest measure score and checks if it is interesting (i.e., greater
than the threshold t , Section 2). If a node is found to be an ISP node, all its descendants will be
pruned since the output will only contain DISPs. Otherwise, the algorithm will further evaluate
its children in the next level of G-DAG.
SEP is efficient for DISP discovery on a single input (i.e., observed) path [46]. For significance

testing, however, the original SEP algorithm requires slight modification to use on simulated paths
in Monte Carlo simulation trials. These modifications are described next in Section 3.2.

3.2 Significance Testing: A Baseline SEP-MCS Algorithm

Since no closed-form probabilistic models are known to compute the exact p-value of each dis-
covered subpath, we use Monte Carlo simulation to estimate it. This section first presents the
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generation process of simulated datasets under the null hypothesis and then proposes a baseline
SEP-MCS algorithm and an efficient D-SAP algorithm to compute the p-value.

3.2.1 Data Generation under the Null Hypothesis. Denote C as a collection of attribute values
of all locations in a path. The null hypothesis, as defined in Section 2, states that a DISP of length
L exists in a path where the values inC are randomly distributed across all its locations. This null
hypothesis describes a scenario in which the DISP does not represent an interesting or meaningful
trend but rather something that can be formed by random chance. In practice, the collectionC can
be created using the values of the observed path in order to maintain the same value distribution.
Based on the null hypothesis, the positions of attribute values in a simulated path should be

completely random. To achieve this, the data generator takes the collection C of values from the
observed path and randomly shuffles the values |C | times. As a result, the values in the shuffled
path have a complete random order. The data generation process is repeated M times (i.e., once
for each new simulated path) to generate theM simulated paths to use in Monte Carlo simulation.
Note thatM is a user-defined value (e.g., 1,000, 10,000, or more).

ALGORITHM 1: SEP-MCS(S , thrd)

Require:

• A simulated path S with N locations
• An interest measure threshold thrd
{Top-down BFS}

1: max_lenдth ← 0
2: for len = N to 2 do
3: for i = 1 to N − len + 1 do
4: score ← compute interest measure value for subpath S (i : i + len − 1)
5: if score ≥ thrd then

6: max_lenдth = len
7: Returnmax_lenдth
8: end if

9: end for

10: end for

3.2.2 A Baseline Algorithm: SEP-MCS. A baseline algorithm is proposed to find the longest sub-
path in each simulated path. As mentioned in Section 3.1.2, the original SEP algorithm is efficient
for finding all DISPs in an input path (i.e., observed path). However, it involves unnecessary com-
putations when used on a simulated path in Monte Carlo simulation, because each MCS trial only
needs the length of the longest ISP (must be a DISP) instead of all DISPs. For each MCS trial, since
only the longest ISP is needed, the pruning technique in SEP is no longer required to reduce the
search space. Instead, once the first ISP is found following a top-down BFS structure,2 we can di-
rectly terminate the algorithm for the current MCS trial, record this longest length, and continue
onto the next MCS trial as shown in Figure 5. Thus, we modified the original SEP algorithm to con-
struct the baseline algorithm for significance testing. The modified algorithm is named SEP-MCS,
and its pseudocode is shown in Algorithm 1.
At initialization, the longest-length variable max_lenдth is set to 0. Based on the top-down

structure (longest subpath to shortest subpaths), the baseline algorithm terminates as soon as a

2This ISP must be a DISP and must be the longest because of the traversal order used in the algorithm.
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Fig. 5. Baseline SEP-MCS algorithm illustrated on a G-DAG representation.

subpath satisfies the interestingness test and returns it as the length of the longest subpath in the
current trial.

Definition 8 (Maximum-length Table). A maximum-length table contains the maximum length
of interesting subpaths in each simulated path. The number of lengths in the table is the same as
the number of simulated paths M (or simulation trials). The table has a descending order so that
longer lengths have better ranks.

The baseline SEP-MCS algorithm is run on every simulated path to generate the maximum-
length table (Definition 8). The p-value of each DISP from the observed path (real dataset) can
now be computed based on its rank in the maximum-length table. For example, if the rank of a
length is k and the number of simulated lengths isM , its p-value is computed as k/M .

3.3 Dynamic Search and Prune (D-SAP) Algorithm

The goal of the D-SAP algorithm is to further improve the computational efficiency using the rela-
tionships among different lengths. D-SAP classifies the candidate lengths of dominant interesting
subpaths into two types: satisfiable length and unsatisfiable length.

Definition 9 (Satisfiable Length). Satisfiable lengths represent the lengths of interesting subpaths
that may appear by chance, that is, the lengths of interesting subpaths that can be generated by
random chance under the null hypothesis. For example, given a significance level of 0.01, a length
is considered as satisfiable if an interesting subpath of such length can be discovered in more than
1% of the simulated paths based on the null hypothesis.

Definition 10 (Unsatisfiable Length). Unsatisfiable lengths are lengths of interesting subpaths
that may not appear by chance. For example, given a significance level of 0.01, a length is consid-
ered as unsatisfiable if an interesting subpath of such length cannot be discovered in more than
1% of the simulated paths based on the null hypothesis.

There are three building blocks of the D-SAP algorithm:

(1) Determine the satisfiability of each candidate length.
(2) Efficiently enumerate lengths and determine the longest satisfiable length (Definition 9).
(3) Compute p-values of interesting subpaths for the observed data (i.e., real data).

The D-SAP algorithm yields the same p-value as the baseline algorithm with improved compu-
tational efficiency. In the following, we describe the three building blocks.
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3.3.1 Determine Satisfiability of a Single Candidate Length. To determine the satisfiability of a
candidate length, the D-SAP algorithm tests it across all simulated paths. Algorithm 2 illustrates
the process of testing the satisfiability for a single candidate length. In line 1, bool_sat is a Boolean
value that will be TRUE if the input candidate length len is satisfiable, otherwise FALSE. In line
2, total_sat is initialized to record the total number of simulated paths that have at least one in-
teresting subpath (ISP) with len discovered. The algorithm examines every possible subpath with
length len using a sliding-window approach and returns True if any ISP is found. Otherwise, the
algorithm returns False.

ALGORITHM 2: satisfiability_checker(Sall , thrd , len, α )

Require:

• A set Sall of allM simulated paths S1, S2, . . . , SM , each with N locations
• An interest measure threshold thrd
• A length len to be tested
• A significance level α
{Satisfiability of a single candidate length}
{Test across all paths}

1: bool_sat ← FALSE
2: total_sat ← 0
3: for S in Sall do
4: for i = 1 to N − len + 1 do
5: score ← compute interest measure value for subpath S (i : i + len − 1)
6: if score ≥ thrd then

7: total_sat ← total_sat + 1
8: BREAK

9: end if

10: end for

11: end for

12: if total_sat/M > α then

13: bool_sat ← TRUE
14: end if

15: Output ← bool_sat

3.3.2 Determine the Longest Satisfiable Length with Pruning. D-SAP enumerates lengths in a
bottom-up manner (i.e., from shortest to longest). This may be counterintuitive since the goal of
this step is to find the longest satisfiable length. However, since the lengths of interesting subpaths
that can be randomly generated are normally very small, starting from the shortest length can
actually cost much less time to reach the longest satisfiable length, which are usually not very
long. More importantly, to avoid the need to exhaustively enumerate all the possible lengths from
1 to the length of the entire input path, D-SAP will use the satisfiability test results of enumerated
lengths to prune out longer candidate lengths and save computation time.
Based on the closed-set property of the interest measures, if we have enumerated two adjacent

noninteresting subpaths, their concatenation is also noninteresting and can be pruned.

Theorem 1 (Concatenation of Two Subpaths). Denote S1 and S2 as two adjacent subpaths

that do not meet the interest measure threshold (i.e., F (S1) < t and F (S2) < t , where F is a member of

potential interest measure functions defined in Section 2). Denote S as a concatenation of S1 and S2.
Then, F (S ) < t .
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Fig. 6. Examples of subpaths pruned using concatenations of shorter subpaths.

Proof. According to the definition of interest measure F (·) in Section 2 (Definitions 2 and 3),
F (S ) satisfies the “closed set” property so that a clear mathematical boundary exists between “in-
teresting” and “noninteresting.” This suggests that F (S ) <=max (F (S1), F (S2)). Since F (S1) < t and
F (S1) < t , F (S ) < t (in fact, F (S ) can be written as βa · F (S1) + βb · F (S2), where βa + βb = 1). �

Theorem 2 (Concatenation of k Subpaths). Denote S1, S2, . . . , Sk as k adjacent subpaths that

do not meet the interest measure threshold ((i.e., ∀i ∈ 1, . . . ,k, F (Si ) < t ). Denote S as a concatenation
of S1, S2, . . . , Sk . Then, F (S ) < t .

Proof. S can be expressed as a sequential combination of two subpaths: S = ((...(S1 + S2) +
S3) + S4) + · · · + Sk ). Thus, F (S ) < t is established by sequentially applying Theorem 1. �

Based on Theorems 1 and 2, we can filter out longer subpaths using concatenations of uninter-
esting subpaths (Figure 6). So far, we have only done this on concatenations of adjacent subpaths.
However, we can extend the scope of the theorems beyond specific subpaths and generalize them
to linear combinations of unsatisfiable lengths, where each length represents all subpaths of that
length. This allows us to filter out all subpaths of the same length in one step.
A challenge is that in general, the sum of two unsatisfiable lengths is not necessarily unsat-

isfiable. For example, for two unsatisfiable lengths L1 and L2, denote set1 and set2 as the sets of
simulated paths that have an ISP of length L1 and L2, respectively. Since L1 and L2 are unsatis-
fiable, we know that |set1 | < α ·M and |set2 | < α ·M , where α is the significance level and M is
the total number of simulated paths. However, |set1 ∪ set2 | may not always be smaller than α ·M ,
although in practice it is likely that set1 and set2 heavily overlap with each other. Note that having
|set1 ∪ set2 | ≥ α ·M does not directly conclude that L is satisfiable because being able to find an
ISP of L1 (or L2) in a simulated path does not mean we can also find an ISP of L. However, this does
give a possibility that L can be satisfiable.
For easier illustration, we start with a simple special case where we do always have L = L1 + L2

being an unsatisfiable length when L1 and L2 are any two unsatisfiable lengths. For this special
case, we have the following Theorem 3.

Theorem 3 (Linear Combination of k Unsatisfiable Lengths). Denote L1, L2, . . . ,Lk as k
unsatisfiable lengths. Denote L as a linear combination of L1, L2, . . . ,Lk :

L = λ1 · L1 + λ2 · L2 + · · · + λk · Lk ,
where λi is a nonnegative integer, ∀i ∈ {1, 2, . . . ,k }.
Then, L is also an unsatisfiable length.
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Proof. The linear combination can be rewritten in the following form:

L = λ1 · L1 + λ2 · L2 + · · · + λk · Lk
= L1 + · · · + L1︸����������︷︷����������︸

λ1

+L2 + · · · + L2︸����������︷︷����������︸
λ2

+ · · · + Lk + · · · + Lk︸����������︷︷����������︸
λk

.

With the above expansion, the original linear combination of multiple unsatisfiable lengths is
expressed as a sequential combination of two unsatisfiable lengths. Since in our special case, the
addition of any two unsatisfiable lengths is always assumed to remain unsatisfiable, the linear
combination is also unsatisfiable. �

Using Theorem 3, we can easily devise a filtering algorithm for the special case, in which we
directly prune all lengths that are linear combinations of known unsatisfiable lengths.
Going beyond the special case, we present an additional subprocess, called a path tracker, which

efficiently validates if L = L1 + L2 is indeed unsatisfiable, where L1 and L2 are two input unsatisfi-
able lengths. The path tracker does this by checking if there is indeed nomore than α ·M simulated
paths that have an ISP of length L. Basically, it covers both of the following two scenarios: (1) if
|set1 ∪ set2 | < α ·M , we can directly conclude L is unsatisfiable; and (2) if |set1 ∪ set2 | ≥ α ·M , we
will check each simulated path in set1 ∪ set2 to verify if it is an ISP of length L. The path tracker
allows us to exactly determine if a newly combined L remains unsatisfiable in general cases, and
thus generalizes the use of the filtering strategy in Theorem 3 (i.e., by including an additional
validation step using the path tracker).
The final filtering algorithm and path tracker are illustrated in Algorithm 3. For each unsatisfi-

able length, the path tracker stores the IDs of simulated paths (each simulated path has a unique
ID ∈ 1, 2, . . . ,M) that contain an ISP of that length. When a new length is combined from unsat-
isfiable lengths, the path tracker checks whether the number of unique path IDs of those lengths
is greater than or equal to α ·M . If it is smaller, then the new length can be directly pruned as
an unsatisfiable length. If it is greater than α ·M , the path tracker only needs to check simulated
paths of those IDs to see if they actually contain an ISP of the new length (i.e., no need to check
all simulated paths). Note that the work required by the path tracker is very limited, because sig-
nificance level α is normally a very tiny percentage (e.g., 0.01, 0.05), and the number of IDs stored
for each unsatisfiable length must be smaller than α ·M .

3.3.3 Compute P-Values of Interesting Subpaths in an Observed Path. According to the p-value
definition in Section 2.2, given the length of a detected ISP in an observed path, its p-value is the
frequency of simulated paths that contain an ISP with the same or longer length. For example, for
a length L, if 0.5% of simulated paths contain an ISP with length greater than or equal to L, the
p-value of L is 0.005. Then, in terms of significance testing, if the desired significance level (i.e.,
p-value threshold) is 0.01, we conclude L is significant.
So far, in the D-SAP algorithm, we have determined the longest satisfiable length. Thus, if the

length L of a detected ISP is smaller than this longest satisfiable length, we can directly conclude
that this ISP must not be significant. However, if L is longer, then a postprocessing step is needed
to compute the exact p-value.
In the postprocessing, we reuse the path IDs of unsatisfiable lengths stored in the path tracker

(Section 3.3.2). Given a length L of a detected ISP, we count the number c of unique path IDs
associatedwith all lengths ≥ L. Then, p-value can be computed as c/M , whereM is the total number
of simulated paths. Finally, based on the desired significance level α , we conclude L is significant
if c/M < α and vice versa.
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ALGORITHM 3: unsatisfiability_filter(Sunsat , L, Ltot , α ,M , Sall )

Require:

• A set Sunsat of lengths known to be unsatisfiable
• A newly discovered unsatisfiable length L
• The total length Ltot of the entire input path
• Significance level α
• Total number of simulated pathsM
• A set Sall of allM simulated paths
{Unsatisfiability filter based on linear combinations}

1: for Li in Sunsat do
2: Lcom = Li + L
3: if Sunsat .contains(Lcom ) or Lcom > Ltot then
4: continue
5: end if

{Path-Tracker}
6: set1 = PathTracker.getPathID(Li )
7: set2 = PathTracker.getPathID(L)
8: setcom = joinSet(set1, set2)
9: if setcom .size>=α ·M then

10: c = 0
11: for j in setcom do

12: if existISP(Sall (j ), Lcom ) then
13: c = c + 1
14: else

15: setcom .remove(j)
16: end if

17: end for

18: if c >= α ·M then

19: continue
20: end if

21: end if

22: PathTracker.addPath(Lcom , setcom )
23: Sunsat .ADD_ELEMENT(Lcom )
24: end for

3.3.4 Initializing D-SAP with a Better Start Length. The unsatisfiable length filter in D-SAP al-
lows it to reverse its intuitive top-down BFS traversal of the G-DAG and check lengths in a bottom-
up fashion. This is ideal when the longest ISP length in simulated paths is very small relative to the
length of the whole path, which we found was mostly true through our experiments. In this case,
the bottom-up search order can potentially reduce most of the work needed to enumerate subpath
instances of unsatisfiable lengths. In another situation, the longest ISP length in a simulated path
could possibly be around the shallower rows of the G-DAG. In such situations, starting from the
bottom may not be as efficient since the filter will not have a known unsatisfiable length to work
with (minimum unsatisfiable length is long). In this case, a binary searcher is proposed to search
for the potentially smallest unsatisfiable length. The binary searcher is used at the beginning of
D-SAP (i.e., initial phase) so that the filter can start its search at a reasonable length. Staring from a
half of the total length, the binary searcher heuristically looks for the smallest unsatisfiable length
as shown in Algorithm 4.
If the smallest unsatisfiable length returned is greater than half of the total lengthN of the entire

path, then no longer length can be combined from the existing unsatisfiable lengths. In such cases,
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D-SAP will immediately abort the bottom-up search direction and switch back to the SEP-MCS
algorithm (Algorithm 1) to optimize its efficiency.

ALGORITHM 4: binary_searcher(Sall , thrd , α )

Require:

• A set Sall of allM simulated paths S1, S2, . . . , SM , each with N locations
• An interest measure threshold thrd
• A significance level α
{Heuristically search for the smallest unsatisfiable length}

1: len ← 
N /2�
2: while TRUE do

3: boolsat = satisfiability_checker(Sall , thrd , len, α ) {Algorithm 2}
4: old_len = len
5: if boolsat == TRUE then

6: len = 
(N + len)/2�
7: else

8: len = 
(1 + len)/2�
9: end if

10: if len == old_len then

11: Break

12: end if

13: end while

14: Return len

3.3.5 Analytical Results. First, Theorem 4 shows that the proposed D-SAP algorithm returns all
significant DISPs (completeness) and only significant DISPs (correctness).

Theorem 4. The D-SAP algorithm is correct and complete.

Proof. To guarantee correctness and completeness, we show that D-SAP will return a subpath
if and only if it satisfies all the three conditions: (1) interesting, (2) dominant, and (3) signifi-
cant. First, the returned set of subpaths must be from a real path. Since D-SAP only focuses on
significance testing and does not alter the enumeration algorithm on the real path, we must have
a complete and correct set of DISPs [46] for significance testing. This addresses the first two con-
ditions. Then, for significance testing, Theorem 3 guarantees that the pruning of lengths in D-SAP
is exact and does not incur any error. Further, according to Section 3.3.3, the p-value of a length
L is computed using the exact number of simulated paths (i.e., with the path tracker) that have a
DISP longer than L. Thus, the acceleration in D-SAP does not alter the result of the p-value. This
guarantees that all subpaths returned must be significant (i.e., having p-values smaller than α ) and
all significant paths will be returned. �

Then, we analyze the overall time complexity of D-SAP. DenoteN as the total length of the input
path,M as the number of Monte Carlo simulation trials, and α as the significance level. Denote the
complexity of interest measure evaluation for a subpath of length l as f (l ), which is often in a range
ofO (1) toO (l ). Since the time saved by the pruning phase depends on the total number of unsatis-
fiable lengths that can be filtered out, we use K to represent the number of such lengths. The time
complexity of D-SAP is bounded by O (M · (N − K )N · f (N ) + 2αM · KN · f (N ) +Mloд(N )N ·
f (N )) = O (MN · f (N ) · (N − K + 2αK )). Since significance level α is normally a fixed small value
(e.g., 0.01), the complexity can be further simplified asO (MN · f (N ) · (N − K )). In addition, many
popular interest measure functions can be computed inO (1) time (e.g., “slope” or “gradient” as an
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interest measure for change along a path, sameness degree [46]). In those cases, the asymptotic
complexity becomes O (MN (N − K )).

4 CASE STUDY ON ECOCLIMATE DATA

We applied the proposed D-SAP approach on eco-climate data used in climate change research.
The goal was to show that the algorithm can discover meaningful patterns. We used the sameness
degree as an interest measure to discover subpaths of abrupt change. The results of the approach
are presented with interpretation by domain scientists.

4.1 Discovering ST Subpaths of Abrupt Change

Climate change researchers are interested in patterns of change in eco-climate data. As noted
earlier, areas (subpaths) in a geographical space displaying evidence of abrupt changes in rainfall,
vegetation cover, and so forth may signal the presence of ecotones between different ecological
zones. In computational terms, given a path in eco-climate data, the goal is to discover all the
subpaths along which there is a consistently abrupt change in one or more attributes.
Our algorithm can work with classical measures (e.g., slope). However, climate scientists prefer

interest measures that favor persistent change over changes with ebbs and flows. We thus define
an interest measure for the pattern we are seeking as the “degree of (change) sameness” (i.e., the
same as we used in our previous work [46]).

Denote S as a path with N locations s1, s2, . . . , sN , (si , sj ) as a subpath from si to sj , fv (si ) as the
vegetation index value of location si , and Δ(si , sj ) = fv (sj ) − fv (si ) as the change from fv (si ) to
fv (sj ).
Given an abruptness threshold of change θa , a unit subpath (si , si+1) is a unit subpath of abrupt

increase if Δ(si , si+1) � θa . Similarly, if we are interested in abrupt decrease, we can change the
condition to Δ(si , si+1) ≤ −θa . One way to specify θa is to compute a certain quantile (e.g., top 10%)
of the entire population of unit differences (i.e., Δ(si , si+1)). In the following, we will use abrupt
increase as an example to illustrate our interest measure in this case study—the sameness degree.
Using the abruptness threshold θa , we first classify the unit subpaths into two sets: (1) unit sub-

paths with abrupt increaseWa = {(si , si+1) | Δ(si , si+1) � θa , i ∈ [1,N − 1]}, and (2) unit subpaths
with no abrupt increaseWn = {(si , si+1) | Δ(si , si+1) < θa , i ∈ [1,N − 1]}. Then, the sameness de-
gree of a subpath (si , sj ) is formally defined as

SD (si , sj ) =
Mean

(
{Δ(sk , sk+1) | (sk , sk+1) ∈Wa ∪Wn ,∀k = i, . . . , j − 1}

)

Mean
(
{Δ(sk , sk+1) | (sk , sk+1) ∈Wa ,∀k = i, . . . , j − 1}

) . (1)

For the special case where there is no unit subpath of abrupt increase (i.e., 0 in denominator),
we define the sameness degree to be 0 due to the absence of interesting change.
The sameness degree measures the “slope” of values in a subpath against its abrupt part, thereby

showing the “sameness” of the increasing trend in the subpath. The sameness degree is differ-
ent from the simple slope in that (1) it favors subpaths with persistent increase/decrease trends
over those with ebbs and flows, even if they have the same slope, and (2) the sameness degree
is bounded. Figure 7(a) shows a sample data path with six locations. Figure 7(b) summarizes the
slope and sameness degree values for different subpaths. As can be seen, the slope of subpath
(1, 3) and (4, 6) is the same, even though (1, 3) is less persistent in change than (4, 6). The sameness
degree favors (4, 6) and gives it a higher score.
A larger sameness degree means a more interesting pattern. A sameness degree of 1 means that

all the unit subpaths have abrupt changes, while a sameness degree close to 0 means no interesting
change.

ACM Transactions on Intelligent Systems and Technology, Vol. 11, No. 1, Article 2. Publication date: January 2020.



2:16 Y. Xie et al.

Fig. 7. Comparing slope and sameness degree.

Fig. 8. Results of DISPs and significant DISPs on an extracted profile.

Finally, a subpath (si , sj ) is an interesting subpath if it has a sameness degree SD (si , sj ) � θsd ,
where θsd is a user-specified threshold between 0 and 1.We call such subpaths “sub-paths of abrupt
change.”

4.2 Datasets and Settings

In the case study, the dataset we used was the Normalized Difference of Vegetation Index (NDVI)
data from Global Inventory Modeling and Mapping Studies (GIMMS) [11, 35], which measures the
intensity of vegetation across Africa. The spatial resolution was 0.07 degree. We used one snapshot
(collected from August 1 to 15, 1981) and smoothed the data using a longitudinal moving average
of neighboring pixels in one degree.
The dataset contains multiple spatial paths. For simplicity and better illustration of detected

patterns, we chose only spatial paths along each longitudinal column in the dataset, from north
to south. We ran our DISP discovery algorithms to discover both subpaths of abrupt increase and
subpaths of abrupt decrease. For both types of subpaths, the algorithm was run with and without
the significance test in order to illustrate the effect of statistical significance.
Figure 9(a) shows the Africa NDVI data. The dimension of the map is 1,152 by 1,152 pixels. In

this map, greener color represents higher vegetation intensity.

4.3 Patterns of Abrupt Changes along a Single Profile

Figure 8(a) shows a single extracted NDVI profile along a longitude (north to south), where the
Y-axis represents the NDVI value (remapped from [−1, 1] to positive integers ranging in [0, 10000])
and the i-axis represents the locations of the values in the path from north to south. Figure 8(b)
shows the results of the SEP algorithm on the single-column profile. Since this single column
is visualized only to show the effect of significance testing, only DISPs of abrupt increase are
presented (colored in red). Inside the profile, lots of tiny intervals of increase can be found in the
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Fig. 9. Case study data as well as DISPs detected with and without significance test.

middle (e.g., an interval with length of 1 unit and sameness degree of 1). These tiny intervals are
more likely to reflect the local fluctuations and do not well capture the general trend. In addition,
their dense spatial distribution makes it hard to distinguish the interesting and persistent trends.
Figure 8(c) shows the same profile after we applied significance testing with D-SAP. As can be
seen, the test has removed the tiny intervals of increase that are more likely to be formed by local
fluctuations rather than persistent trends.

4.4 Discovery of Ecotones

An ecotone is a transition area between two biological groups (e.g., a transition between a desert
and a grassland). The footprints of several ecotones can be discovered using the NDVI dataset in
Africa.
Figure 9 shows the results where red intervals represent a dominant abrupt increase and blue

represents a decrease. The original results from the SEP algorithm (without statistical significance)
[46] are shown in Figure 9(b), and those after significance testing by the D-SAP algorithm are
shown in Figure 9(c). Here the abruptness threshold θa was set to the top 10% quantile of all the
positive Δ values of the unit subpaths, and the sameness score was set to 0.5.

From the map of significant DISPs (Figures 9(c) and 9(e)), we can first see an apparent ecotone
(red zone at the top) at the south of the Sahel desert, where vegetation cover exhibits an abrupt in-
creasing trend from north to south. Moving toward the south, we can see another ecotone around
the middle (i.e., the blue belt zoomed and circled in Figure 9(e)), indicating a decrease of active
vegetation. Since NDVI data is derived from satellite imagery collected in August, through Earth
science literature [1, 9] we found that the inner zone between the red and blue belt aligns nicely
with the monsoon area in the summer season of the North Hemisphere in Africa. The monsoon
area is created by the “intertropical convergence zone (ITCZ),” which is the meet-up zone of
northern and southern trade winds from the two hemispheres, leading to frequent rainfalls and
thunderstorms. Thus, the high humidity of this inner zone well explains the significant increases
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and decreases of the vegetation index and helps validate that the detected patterns are meaning-
ful according to domain knowledge. Note that the blue belt (i.e., significant decrease) is also the
boundary between the tree savanna (north) and the rainforest (south). Although both are vegeta-
tive regions, the forest was outside the monsoon area and in a dry season at the time the data was
collected (e.g., drought), which greatly suppresses normal plant expressions and activities (e.g.,
growth, photosynthesis, greenness) or even causes plant death.
Without significance testing (Figures 9(b) and 9(d)), most places of Africa are filled by the tiny

intervals representing local random variations, making it difficult to distinguish the meaningful
trends from these randomly and ubiquitously distributed small intervals. For example, the blue belt
becomes buried in tiny variations and much harder to recognize by comparing the circled regions
in Figures 9(d) and 9(e).

5 PERFORMANCE EVALUATION

We also evaluated the performance gain of the D-SAP algorithm over the baseline SEP-MCS al-
gorithm. We selected SEP-MCS as the baseline because its solution quality is the same as D-SAP,
allowing a fair comparison of computational performance. In our experiments, we used the “same-
ness degree” introduced in the previous section as the interest measure function and found “sub-
paths of abrupt change.” The definitions and settings were the same as in the case study.
Three controlled experiments were designed to separately test the computational savings by

varying the (1) total path length lentot , (2) abruptness threshold APT , and (3) sameness degree
threshold SD. By default, the values of these three variables were set to lentot = 100, APT = 0.25,
SD = 0.5. For significance testing, the total number of simulated paths M was set to 1,000, and
the significance level was 0.01. Theoretically, M can be any value that is greater than or equal to
1/α , and a larger M leads to more accurate estimations of p-values. Here we used M = 1,000 for
α = 0.01 (i.e., 10 times as large as the minimum 100), which is a common value used in practice.

5.1 Synthetic Dataset

The synthetic dataset used in the experiment is generated based on the Africa NDVI dataset used
in our case study. Generation of the synthetic dataset had two phases: (1) data distribution gen-
eration and (2) data sampling. In the first phase, NDVI values in the whole Africa dataset were
condensed into a single-column array, which was sorted in an increasing order. Then, in the
sampling phase, based on the total length of path lentot needed, a stepsize s was determined as
Round(lenall/lentot ). By sequentially sampling on the single-column array with stepsize s , a syn-
thetic data path with length lentot was generated whose value distribution was an approximation
of the original value distribution in the whole dataset. We used the synthetic data in order to have
larger values of lentot for computational evaluation, which are otherwise unavailable directly from
the real-world data (i.e., one column of the NDVI data).

5.2 Effect of Data Size

We varied the total length lentot of the input path from 100 to 6,400. Results for the two algorithms
are shown in Figure 10, where the Y-axis is the runtime in seconds (log-scale) and the X-axis is the
length of the input path. As can be seen, the general trend is that D-SAP consistently outperformed
the baseline SEP-MCS for all data lengths tested in our experiment. Furthermore, its runtime im-
provement increases with increasing path length. For example, at lentot = 100, D-SAP is about 5
times faster than the baseline SEP-MCS algorithm, and at lentot = 6,400, D-SAP is about 364 times
faster. As mentioned in Section 3.3.4, in the worst-case scenario, D-SAP will switch back to SEP-
MCS when the shortest satisfiable length is greater than or equal to half of the entire length (i.e.,
the length filter can no longer prune new lengths using linear combinations). In such worst-case
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Fig. 10. Runtime comparison between baseline SEP-MCS and D-SAP with varying data size.

Fig. 11. Runtime comparison between baseline SEP-MCS and D-SAP with varying SD threshold.

scenarios, D-SAP will perform mostly the same as the baseline approach but with additional over-
head caused by the binary searcher (Section 3.3.4). However, such cases are rare (i.e., forming a long
interesting subpath by pure randomness) and we did not find them throughout our experiments.

5.3 Effect of “Sameness Degree” Threshold

We varied only the sameness degree threshold in this experiment. Since “sameness degree” is
always within the range of (0,1], this experiment sequentially tested performances over SD =
0.1, 0.2, . . . , 0.9, 1. The results are shown in Figure 11, where the Y-axis is the runtime in sec-
onds and the X-axis shows different values of SD. Figure 11 shows an interesting trend that D-SAP
outperforms the baseline SEP-MCS algorithm at all SD values and its performance improves as
SD increases, while the performance of baseline SEP-MCS decreases. The reason is that D-SAP
prefers scenarios in which the maximum ISP length is small, while the baseline algorithm prefers
the contrary. Since larger SD values restrict the potential length of an ISP, D-SAP yields better
computational savings with a larger SD.

5.4 Effect of APT Threshold

Finally, we compared algorithm performance with different abruptness thresholds (APTs). Can-
didate values of APT used are from 0.1 to 0.9, with an increment of 0.1 each time. The results
are shown in Figure 12. As can be seen, D-SAP consistently outperforms the baseline algorithm,
but neither algorithm’s performance is affected much by different APT values. This means the
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Fig. 12. Runtime comparison between baseline SEP-MCS and D-SAP with varying APT threshold.

Table 1. Alternative Design Decisions

Design Decision Current Alternatives

Aggregate function Algebraic function Distributive or holistic function
Significance of a path Path-length based (with

threshold on values)
Path-value based (with threshold
on length)

Random data generation Shuffle values from real
data

Generate values based on
estimated distribution

Dimension 1D path 3D spatiotemporal region

runtime difference is basically a reflection of the first experiment with lentot fixed at 100. Unlike
“sameness degree” SD, abruptness APT does not have a direct impact on the maximum length of
an ISP in a path. It determines the total number of unit paths selected as local abrupt increases or
decreases. The maximum length of the path is still mainly determined by SD and how the local
abrupt increases and decreases as well as the other values are allocated in an input path. Since the
performance of D-SAP and the baseline algorithm relies mostly on the maximum ISP length, APT
does not affect the performance much.

6 DISCUSSION

In this section, we discuss a few alternative design decisions that can be considered in the detection
of significant interesting subpaths. Table 1 provides a summary of these alternatives.

First, this study mainly focused on algebraic functions. This is the most common type of ag-
gregate function. Other algebraic functions used as interest measures include the Pearson Cor-
relation coefficient [17, 42] to measure similarity between time series, spatial scan statistics, and
variations [12, 23] to model the anomalous degree of spatial regions. Holistic function examples
include median, percentile, and mode. Trend tests on time series such as the Mann-Kendall test
is a holistic function [44]. In a traffic congestion study, percentile is commonly used to identify
congested roads [30]. These functions require higher computational costs.

Second, the significance of a dominant interesting subpath is defined using path length (Sec-
tion 2.2). Note that a subpath first has to be interesting and dominant in order to be a candidate
for significance testing, which means that path values are still considered. The main motivation
of this choice is to encourage discovery of persistent trends that are not likely formed by local
fluctuations. A potential alternative is to use path value as an indicator for statistical significance,
where path length may be used as a regularizer (e.g., similar to [41]). For example, a subpath of
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length l is significant if its overall change is greater than the maximum change of subpaths with
the same length in 99% of the random trials. This alternative formulation may allow detection of
local subpaths with small lengths but big changes.
Third, in the current Monte Carlo simulation, we generate random paths by shuffling the origi-

nal values in the real data, which guarantees that a random path maintains the same value distri-
bution as the original path. An alternative is to first estimate the value distribution (e.g., normal
distribution) from the real-world data and then generate the values of a random path using the
distribution. This may allow the random paths to cover a greater variety of value combinations
and reduce the bias if the estimated value distribution is the same as or very close to the true dis-
tribution behind the real phenomenon. Fourth, the current work focuses on detecting significant
interesting subpaths in one-dimensional space. The same significance testing framework is also
applicable to interesting spatiotemporal subregion detection in three-dimensional space [47]. In
the 3D formulation, the data is a concatenation of 2D rasters (e.g., NDVI or precipitation maps)
along the temporal dimension. An interesting subregion is then a 3D cube where there are abrupt
changes between local rasters that are adjacent in time. To test the significance of a 3D subregion,
we can use its volume as an indicator, which is analogous to the path length in the 1D case. Novel
computational strategies may be needed to handle the increased computational cost.

7 OTHER RELATEDWORK

Spatial data mining has been applied in various domains such as urban intelligence [21, 36, 39],
public safety [12, 43], and environmental and Earth science [3, 16, 17, 38]. Mining change patterns
from environmental and Earth science data has become an emerging topic in research [2, 31, 45].
Technically, literature related to the topic of this article can be generally classified into two

categories: (1) spatial change and edge detection, and (2) time-series change detection. We further
discuss each group of work based on the spatiotemporal footprint they identify.
Spatial change detection techniques aim at finding locations where abrupt changes occur.

Wombling [5, 13, 24, 25] is a technique that detects sharp (e.g., significant) changes between re-
gions (e.g., change points). However, applying Wombling on a spatial or temporal path will still
generate points of local change rather than an interesting subpath of arbitrary length. Similarly,
edge detection techniques [8] also find sharp local changes in paths or images rather than intervals.
Our topic is also related to time-series analysis as our proposed solution can also find inter-

vals of rapid change along a time series. Traditional time-series change detection techniques [4, 6]
focus on finding time points where the value or statistical measures shift abruptly. For example,
Cumulative Sum (CUSUM) is a classical method [29]. The values in a time series are treated as
independent, identically distributed (i.i.d.) variables. A cumulative score of a statistical measure
(e.g., likelihood ratio of a change in mean) is calculated and the time point with the highest cu-
mulative sum is identified and treated as the time of change. These methods, however, only find
individual time points rather than long intervals or subpaths with change. Other methods such
as time-series segmentation or piece-wise linear approximation [19, 20] and change trend detec-
tion [37] aim to decompose a time series into homogeneous, linear segments. These methods can-
not find the desired output of our problem because they are likely to identify noisy, insignificant
value fluctuations as segments and break long, significant time intervals or subpaths.
Some other problems may have a similar computational structure but with very different con-

straints and outputs. The sequence/subsequence matching problems, such as dynamic time wrap-
ping [7, 18], similarity search [10], and trajectory clustering [15], focus on finding subsequences
that match a given query sequence or a group of similar subsequences. These problems are quite
different from ours. Our problem is also different from sliding-window-based pattern discovery
because the lengths of the interesting subpaths are not known in advance, and may vary from 1
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to the length of the entire input data. In contrast, sliding-window-based pattern discovery tech-
niques assume fixed or known window sizes. Spatial trajectory segmentation aims at segmenting
a given trajectory into disjoint, homogeneous segments based on different spatiotemporal criteria.
Like time-series segmentation, these techniques also lack the ability to find statistically significant
subpaths with interesting properties.

8 CONCLUSION

In this article, we extended our framework for interesting subpath discovery by incorporating
statistical significance testing, which can filter out patterns that are likely to occur by random
chance. We proposed a baseline algorithm to estimate the p-value of interesting subpaths using
Monte Carlo simulation and proposed an accelerated D-SAP algorithm to reduce the computa-
tional cost. To validate the proposed approaches, we performed a case study using real-world
Earth science datasets and showed the improvement on solution quality achieved by the proposed
significance test. Through controlled experiments, we also showed that the D-SAP algorithm can
greatly improve the computational efficiency by orders of magnitude.
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